Network Basics

Richard Berger, 2021

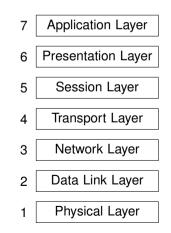
Network Range

Local Area Network (LAN)

- cable based
- limited area
- Ethernet

Wireless Local Area Network (WLAN)

- wireless
- limited area
- WiFi


Wide Area Network (WAN)

- spans large geographical distances
- Dial-Up, DSL, Cable, Fiber, 4G, 5G

Network Layers

Basic Reference Model for Open Systems Interconnect (OSI model)

 A conceptional model that characterizes and standardizes how network communication works

Application Layer

- 7 Application Layer
- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

- Applications use high-level network protocols such as HTTP, HTTPS, FTP, SMTP, IMAP, SSH, Telnet to talk to servers
- think of these protocols as something like a language to speak to a server

Application Layer Protocols

SSH

Remote terminal

HTTP/S

- Firefox
- Chrome
- Safari

IMAP, SMTP

- Outlook
- Thunderbird
- Apple Mail

Example: HTTP GET request

HTTP Client Request

GET /index.html HTTP/2 Host: www.example.com

HTTP Server Response

```
HTTP/2 200 OK
date: Mon, 18 Jan 2021 16:30:13 GMT
content-type: text/html; charset=UTF-8
content-encoding: en
server: Apache
content-length: 92
<html>
<head>
  <title>Example</title>
</head>
<body>
  Hello World!
</bodv>
</html>
```

Presentation Layer

- 7 Application Layer
- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

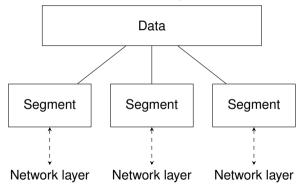
- the presentation layer is responsible for transforming data between application and the lower layers
- data in the application layer may use a different data encoding than the lower layers. E.g. text could be **encoded** or **decoded** into different formats, such as ASCII to UTF8 or vice versa.
- data could be compressed or decompressed
- data could be encrypted or decrypted

Session Layer

- 7 Application Layer
- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

- communication partners will sometimes want to know about each other over a longer period of time, even if connection is interrupted
- another need for sessions is authentication and authorization
- for some network applications you will have to first authenticate to gain access to a resource, such as files on a network folder
- the session is what ensures you don't have to authenticate every time you make a new request

Transport Layer


7 Application Layer

- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

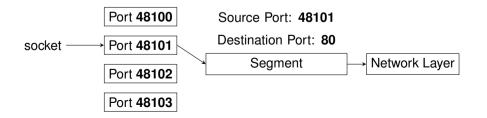
- no matter what application protocol is being used, or how data is encoded, compressed, encrypted, or whether the application keeps track of a session or not, all data goes through the transport layer
- the transport layer is what allows multiple applications to use one network connection simultanously
- the most commonly known transport protocols are
 - User Datagram Protocol (UDP)
 - Transmission Control Protocol (TCP)

Transport Layer: Segmentation

the transport layer splits the data it should send into TCP segments or UDP datagrams and send or receives them via the network layer

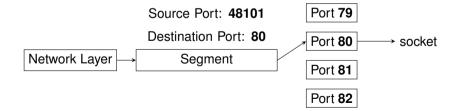
Transport Layer: Port Ranges

- The sharing of a network connection is done by providing multiple ports per network connections
- ► UDP and TCP each provides 65535 ports per network connection
- Ports are split up three ranges


0-1023: Reserved for privileged services and well-known services, managed by Internet Assigned Numbers Authority (IANA)

- 1024-49151: User or registered ports
- 49152-65535: Dynamic (ephemeral) or private ports

Port	Protocol
20	File Transfer Protocol (FTP) Data Transfer
22	Secure Shell (SSH) Secure Login
25	Simple Mail Transfer Protocol (SMTP) E-mail routing
53	Domain Name System (DNS) service
80	Hypertext Transfer Protocol (HTTP)
123	Network Time Protocol (NTP)
443	HTTP Secure (HTTPS) HTTP


Sender

- applications use ports by creating a socket that binds to them
- the source port and destination port do not have to be the same
- servers usually use a fixed port, determined by what service they provide
- clients use any port that is available
- source and destination port are added to the datagram/segment header
- the segment/datagram is then forwarded to the network layer

Receiver

- datagrams/segments received by the network layer are forwarded to the transport layer
- the transport layer forwards the reassembled data to the destination port
- a server application could be listening to this port, which is again a socket bound to that port for a specific network connection using a specific transport protocol.

Transport Protocols

User Datagram Protocol (UDP)

connectionless

⊥

- no need to first establish communication with other side
- send data immediately

light-weight

- no connection overhead
- UDP header is 8 bytes (< 20 bytes for TCP)
- 16bit checksum
 - corrupt datagrams are dropped
 - no retransmission!

User Datagram Protocol (UDP)

dropped datagrams are not detected, every datagram is sent once

send datagrams received datagrams $a b c \longrightarrow a c$

UDP does not garantee the order of datagrams

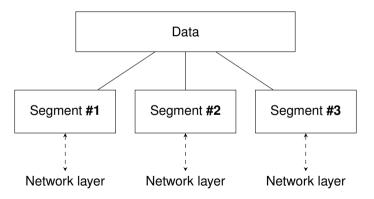
sent datagrams received datagrams $a b c \longrightarrow b a c$

• there is no congestion control ightarrow more dropped datagrams on congested connections

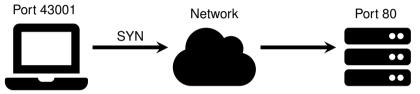
Transmission Control Protocol (TCP)

.(4).

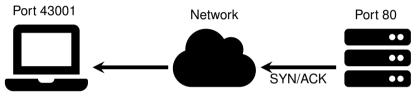
connection-based

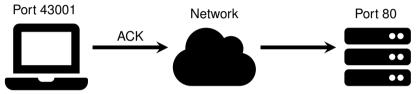

- establish and synchronize communication before sending data
- data can not be sent until connection is established

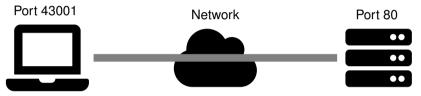
robust

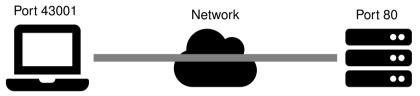

- adds overhead, but more reliable
- larger header (20 bytes) than UDP (8 bytes)
- same 16bit checksum
- all segments have a 32bit sequence number

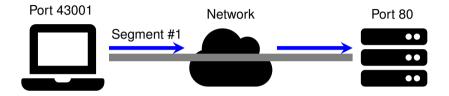
TCP Segments

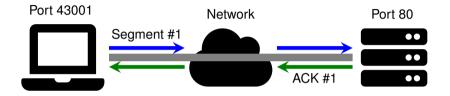

- TCP can reconstruct the correct order of segments
- and detect dropped segments
- this allows to retransmit segments if needed

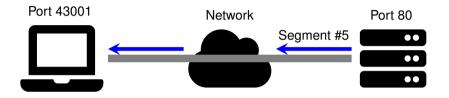

before data is transmitted, the two hosts perform a so-called three-way handshake to initiate a connection


1. The client sends that it wants to establish a connection (SYN) and that it will use the attached sequence number


- 1. The client sends that it wants to establish a connection (SYN) and that it will use the attached sequence number
- 2. The server will respond with SYN and ACK bits set, returning its own sequence number

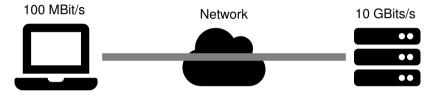

- 1. The client sends that it wants to establish a connection (SYN) and that it will use the attached sequence number
- 2. The server will respond with SYN and ACK bits set, returning its own sequence number
- 3. Finally the client acknowledges with ACK with its next sequence number, which establishes the connection


- 1. The client sends that it wants to establish a connection (SYN) and that it will use the attached sequence number
- 2. The server will respond with SYN and ACK bits set, returning its own sequence number
- 3. Finally the client acknowledges with ACK with its next sequence number, which establishes the connection


- 1. The client sends that it wants to establish a connection (SYN) and that it will use the attached sequence number
- 2. The server will respond with SYN and ACK bits set, returning its own sequence number
- 3. Finally the client acknowledges with ACK with its next sequence number, which establishes the connection
- something similar happens for closing the connection

- any segment that is transmitted must be acknowledged by the other side
- if the sender does not receive an acknowledgment after a certain time, it assumes the segment was lost
- \blacktriangleright \Rightarrow segment will be sent again
- the same happens if the segment checksum is invalid

- any segment that is transmitted must be acknowledged by the other side
- if the sender does not receive an acknowledgment after a certain time, it assumes the segment was lost
- \blacktriangleright \Rightarrow segment will be sent again
- the same happens if the segment checksum is invalid



- any segment that is transmitted must be acknowledged by the other side
- if the sender does not receive an acknowledgment after a certain time, it assumes the segment was lost
- \blacktriangleright \Rightarrow segment will be sent again
- the same happens if the segment checksum is invalid

- any segment that is transmitted must be acknowledged by the other side
- if the sender does not receive an acknowledgment after a certain time, it assumes the segment was lost
- \blacktriangleright \Rightarrow segment will be sent again
- the same happens if the segment checksum is invalid

TCP Flow Control

- if one side is sending data at a rate higher than what the receiver can handle, or if there is congestion on the network, packets will be dropped
- with TCP the connection can slow down or increase the transmission rate to adjust to connectivity and traffic congestion

Network Layer

- 7 Application Layer
- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

- the network layer is responsible of transmitting data from one host to another, even if they are located in different networks
- protocols create and work with packets

logical addressing every host has a unique address in its network

logical addressing every host has a unique address in its network

ړې

routing

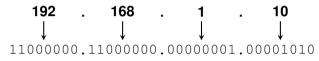
packets from one network can redirected to another

logical addressing every host has a unique address in its network

ړې

routing

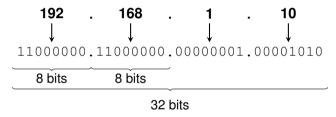
packets from one network can redirected to another



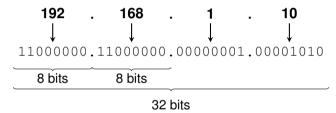
path determination

determine the best path/route to reach a destination Internet Protocol - Version 4 (IPv4)

Internet Protocol - Version 4 (IPv4)

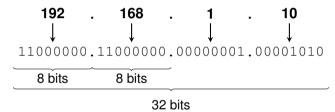

IPv4 addresses are 32-bit (4 byte), usually expressed as a dotted quad, e.g. 192.168.1.10, each number being from 0-255 (one byte)

32 bits


Internet Protocol - Version 4 (IPv4)

IPv4 addresses are 32-bit (4 byte), usually expressed as a dotted quad, e.g. 192.168.1.10, each number being from 0-255 (one byte)

Internet Protocol - Version 4 (IPv4)


IPv4 addresses are 32-bit (4 byte), usually expressed as a dotted quad, e.g. 192.168.1.10, each number being from 0-255 (one byte)

IP addresses consist of two parts network number: uniquely identifies the network host identifier: a unique number within the network for a host

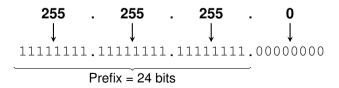
Internet Protocol - Version 4 (IPv4)

IPv4 addresses are 32-bit (4 byte), usually expressed as a dotted quad, e.g. 192.168.1.10, each number being from 0-255 (one byte)

IP addresses consist of two parts

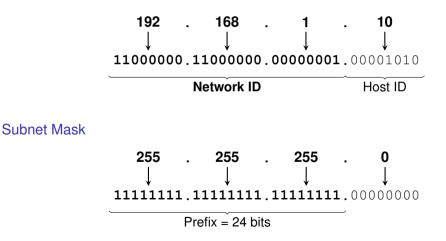
network number: uniquely identifies the network host identifier: a unique number within the network for a host

the number of bits used for each part is determined by the subnet mask


Subnet Mask

Specified either using as dotted quad (32bit) or using a **prefix**, which is simply the number of bits allocated to the network portion.

IP Address


Subnet Mask

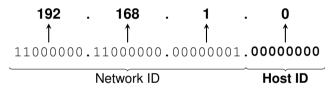
Subnet Mask

Specified either using as dotted quad (32bit) or using a **prefix**, which is simply the number of bits allocated to the network portion.

IP Address

Class-less Inter Domain Routing (CIDR) Notation

the IP and subnet mask can be expressed using class-less inter domain routing (CIDR) notation, which simply adds the prefix after the IP address

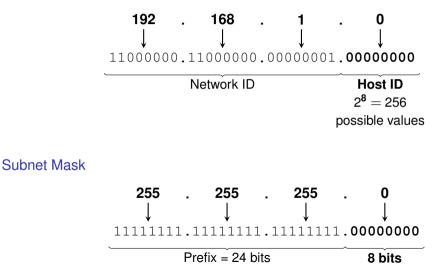

Dotted Quad for 24bit netmask

IP: 192.168.1.1 Netmask: 255.255.255.0 **CIDR** notation

192.168.1.1/24

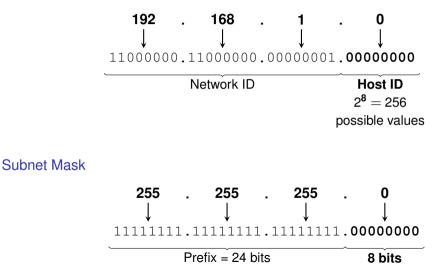
Specifying an IP Network

a common way to specify a network is to set the host identifier to 0 and write the IP address in CIDR notation, e.g., 192.168.1.0/24

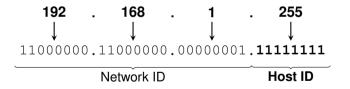


Dotted Quad for 24bit netmask IP: 192.168.1.0 Netmask: 255.255.255.0 **CIDR** notation

192.168.1.0/24


IP Network Range

IP Address


IP Network Range

IP Address

Broadcast Address

- the broadcast address of a network is a special address that can be used to send a packet to all hosts of a network
- it is obtained by setting the host ID to all 1s. For the 192.168.1.0/24 network, the broadcast address is 192.168.1.255.

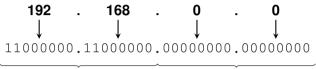
IPv4 Address Space

In total IPv4 provides 2³² unique IP addresses

4,294,967,296 IP addresses

- Internet Assigned Number Authority (IANA) manages the IP address space globally
- IANA delegates blocks of IPs to five regional internet registries (RIR)
- Each RIR controls the assigment to local internet registries (LIR)
- LIRs provide IPs and IP ranges to their customers
- e.g., your internet service provider gives you an IP to access the internet

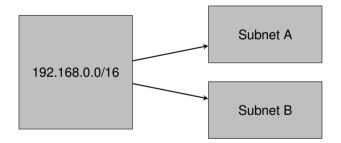
127.0.0.1 Loopback address, commonly known as localhost 0.0.0.0 - 0.255.255.255 : Unused but reserved addresses. 0.0.0.0 is used to specify ANY IP address of a host when opening a socket, which means it will listen to all network interfaces.


The Internet Assigned Numbers Authority (IANA) has reserved the following three blocks of the IP address space for private internets:

- 10.0.0.0 10.255.255.255 (10.0.0.0/8)
- 172.16.0.0 172.31.255.255 (172.16.0.0/12)
- 192.168.0.0 192.168.255.255 (192.168.0.0/16)

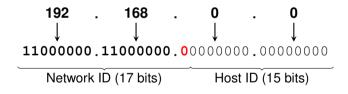
Addresses out of these ranges can not be routed on the public Internet.


Use these ranges to create smaller private subnets by using a bigger prefix / subnet mask



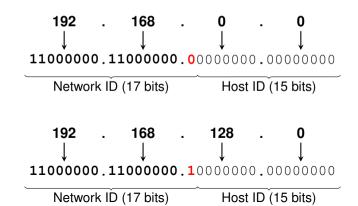
Network ID (16 bits) Host ID (16 bits)

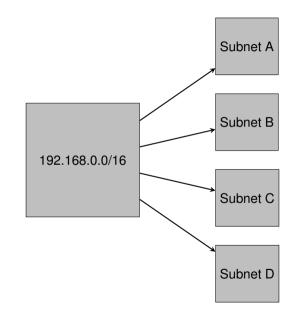
IP Range: 192.168.0.0 - 192.168.255.255



2 subnets out of 192.168.0.0/16 block

we add one more bit to the network ID


2 subnets out of 192.168.0.0/16 block

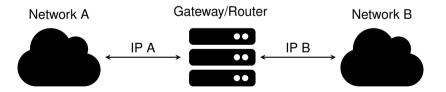

- we add one more bit to the network ID
- ▶ 192.168.0.0/17: Range: 192.168.0.0 192.168.127.255

2 subnets out of 192.168.0.0/16 block

- we add one more bit to the network ID
- 192.168.0.0/17: Range: 192.168.0.0 192.168.127.255
- ▶ 192.168.128.0/17: Range: 192.168.128.0 192.168.255.255

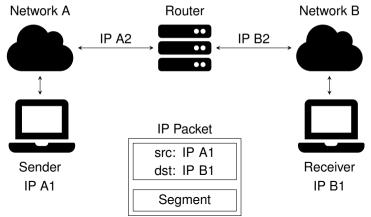
4 subnets out of 192.168.0.0/16 block

- we add two more bits to subnet mask and therefore the network ID
- 192.168.0.0/18: Range: 192.168.0.0 192.168.63.255
- 192.168.64.0/18: Range: 192.168.64.0 192.168.127.255
- 192.168.128.0/18: Range: 192.168.128.0 192.168.191.255
- 192.168.192.0/18: Range: 192.168.192.0 192.168.255.255

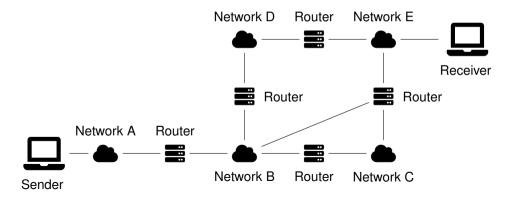

192 . 168 . . 0

11000000.11000000.00000000.00000000 01000000 10000000 11000000

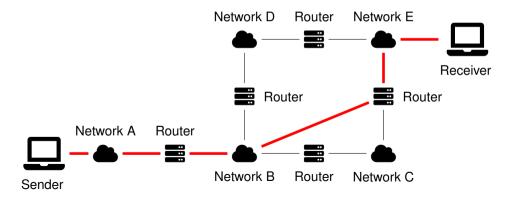
Router / Gateway


packets move from one network to another via special network hosts called routers or gateways

- a router is connected to at least two local networks and can forward IP packets from one network to the other
- each router has mulitple IP addresses, one for each network


Routing

- IP packets are routed based on rules defined in routing tables
- each system has its own routing table
- a route determines the next hop of IP packets, based on their destination address
- the default route, if set, can forward IP packets to a special router, called the default gateway, if no other route is available (e.g., to get to the outside world, the internet)


Path Determination

- static routes can define which router should be used to forward a packet
- used to ensure best path to a target network is used
- dynamic protocols: e.g., Open Shortest Path First (OSPF)

Path Determination

- static routes can define which router should be used to forward a packet
- used to ensure best path to a target network is used
- dynamic protocols: e.g., Open Shortest Path First (OSPF)

Data Link Layer

- 7 Application Layer
- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

Data Link Layer

7 Application Layer

- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

 concerned with putting data on and getting data from media

Data Link Layer

7 Application Layer

- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

 concerned with putting data on and getting data from media

Satellite

- uses physical addressing
- each host on the same medium has a unique physical address

LTE

hosts communicate by exchanging frames

hosts communicate by exchanging frames

every host is uniquely identified by its media access control (MAC) address

- hosts communicate by exchanging frames
- every host is uniquely identified by its media access control (MAC) address
- A MAC is 48bit and typically represented as a hexadecimal string, such as

02:42:5f : d2:10:ab

- hosts communicate by exchanging frames
- every host is uniquely identified by its media access control (MAC) address
- A MAC is 48bit and typically represented as a hexadecimal string, such as

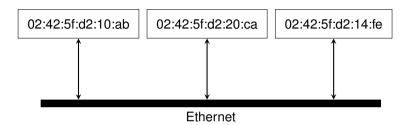
02:42:5f : d2:10:ab

The MAC address is hard-coded into the Network Interface Controller (NIC), your network device

- hosts communicate by exchanging frames
- every host is uniquely identified by its media access control (MAC) address
- A MAC is 48bit and typically represented as a hexadecimal string, such as

02:42:5f : d2:10:ab

- The MAC address is hard-coded into the Network Interface Controller (NIC), your network device
- modern NICs allow changing the MAC programmatically


- hosts communicate by exchanging frames
- every host is uniquely identified by its media access control (MAC) address
- A MAC is 48bit and typically represented as a hexadecimal string, such as

```
02:42:5f : d2:10:ab
| |
OUI host part
```

- The MAC address is hard-coded into the Network Interface Controller (NIC), your network device
- modern NICs allow changing the MAC programmatically

OUI: Organizationally Unique Idendifier (24 bits) Host: Unique Host Identifier by vendor (24 bits)

Ethernet

- conceptually a single-bus where each host connects to
- in modern Ethernet networks each device connects to a switch
- every host can send a frame to any other host
- Ethernet also supports broadcasting a frame to every hosts in a network
- Broadcasts are addressed to the special MAC address ff:ff:ff:ff:ff:ff
- For this reason an Ethernet network is also sometimes called *broadcast domain*

Address Resolution Protocol (ARP)

NICs use MACs for addressing

Address Resolution Protocol (ARP)

NICs use MACs for addressing

► TCP/IP applications uses IP addresses

Address Resolution Protocol (ARP)

- NICs use MACs for addressing
- TCP/IP applications uses IP addresses
- The Address Resolution Protocol (ARP) is used to bridge the gap and translate MACs to IP addresses

- NICs use MACs for addressing
- TCP/IP applications uses IP addresses
- The Address Resolution Protocol (ARP) is used to bridge the gap and translate MACs to IP addresses
- ARP assumes all hosts in the same subnet are on the same local network

- NICs use MACs for addressing
- TCP/IP applications uses IP addresses
- The Address Resolution Protocol (ARP) is used to bridge the gap and translate MACs to IP addresses
- ARP assumes all hosts in the same subnet are on the same local network
- \blacktriangleright \Rightarrow only hosts in the same subnet can communicate

- NICs use MACs for addressing
- TCP/IP applications uses IP addresses
- The Address Resolution Protocol (ARP) is used to bridge the gap and translate MACs to IP addresses
- ARP assumes all hosts in the same subnet are on the same local network
- \blacktriangleright \Rightarrow only hosts in the same subnet can communicate
- an IP packet addressed outside of the subnet, will instead be sent to the default gateway. So ARP will determine the MAC of the gateway IP instead

ARP Request

To: everybody (ff:ff:ff:ff:ff) I'm looking for IP: 192.168.0.10 Signed: MAC 02:42:5f:d2:10:ab

ARP will broadcast and ask who owns a given IP

ARP Request

To: everybody (ff:ff:ff:ff:ff) I'm looking for IP: 192.168.0.10 Signed: MAC 02:42:5f:d2:10:ab

ARP will broadcast and ask who owns a given IP

ARP Response

To: 02:42:5f:d2:10:ab I have IP: 192.168.0.10 Signed: MAC 02:42:5f:d2:20:ca

The ARP response contains the MAC address of the host who owns it, which is then used for future communication

Manual ARP requests on Linux

```
[root@master ~]# arping -c 3 -I em3 192.168.1.1
ARPING 192.168.1.1 from 192.168.0.1 em3
Unicast reply from 192.168.1.1 [84:7B:EB:D9:35:2A] 0.705ms
Unicast reply from 192.168.1.1 [84:7B:EB:D9:35:2A] 0.728ms
Unicast reply from 192.168.1.1 [84:7B:EB:D9:35:2A] 0.701ms
Sent 3 probes (1 broadcast(s))
Received 3 response(s)
```

ARP Cache on Linux

to reduce the number of ARP requests operating systems maintain an ARP cache that contains the mapping of IP addresses to MACs

arp -n		
HWtype	HWaddress	Iface
ether	7c:d3:0a:c7:36:a4	em1
ether	84:7b:eb:f4:fd:5c	em1
ether	7c:d3:0a:c7:29:f6	em1
ether	24:8a:07:51:a7:82	em3
	ether ether ether	HWtype HWaddress ether 7c:d3:0a:c7:36:a4 ether 84:7b:eb:f4:fd:5c ether 7c:d3:0a:c7:29:f6

. . .

▶ When a NIC receives a frame, it checks the following:

▶ When a NIC receives a frame, it checks the following:

is the frame for my MAC address?

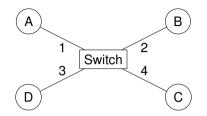
Ethernet Frames

▶ When a NIC receives a frame, it checks the following:

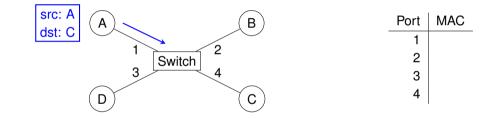
- is the frame for my MAC address?
- is the frame being broadcast?

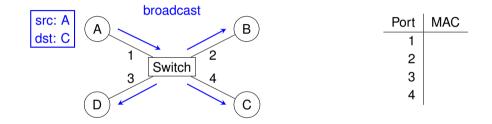
Ethernet Frames

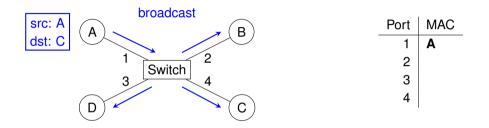
- ▶ When a NIC receives a frame, it checks the following:
 - is the frame for my MAC address?
 - is the frame being broadcast?
 - otherwise discard frame

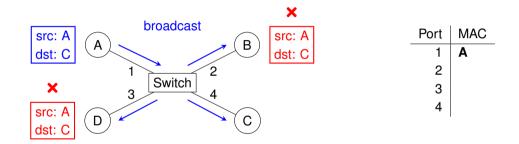

Ethernet Frames

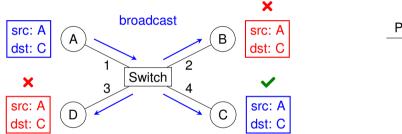
- When a NIC receives a frame, it checks the following:
 - is the frame for my MAC address?
 - is the frame being broadcast?
 - otherwise discard frame
- ▶ NICs can be configured in *promiscuous mode* to pass along all frames


Ethernet Switches


Ethernet Switches

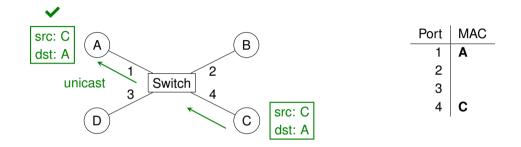

- a switch is a network device with many ports
- it forwards Ethernet frames to the correct port based on the MAC address
- at the beginning the switch doesn't know which port is connected to which MAC, so it broadcasts the frames to all ports
- by learning from the traffic it will create a mapping of MACs to ports and only send frames to the correct port
- this mapping is stored in a so-called *forwarding table* or *forwarding information base* (FIB)


Frame is sent with src=A and dest=C to port 1 of switch

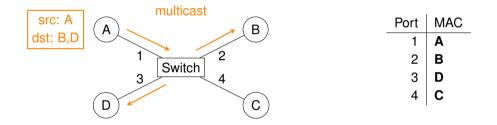

- Frame is sent with src=A and dest=C to port 1 of switch
- The switch doesn't know where to send it, so it broadcasts the frame on all ports

- Frame is sent with src=A and dest=C to port 1 of switch
- The switch doesn't know where to send it, so it broadcasts the frame on all ports
- Along the way the switch learns that MAC A is sending from port 1 and stores this information in its MAC table

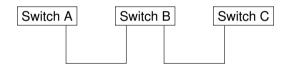
B and D will drop the frame, because the MAC isn't theirs

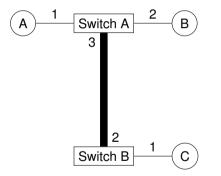

 Port
 MAC

 1
 A


 2
 3

 3
 4


- B and D will drop the frame, because the MAC isn't theirs
- C will accept and process the frame


- When C replies to A, the switch already knows which port A is at, so it forwards the frame with unicast to port 1
- The switch will also learn the origin port of C and store it in its MAC table

beside unicast and broadcast, there is also multicast, which means an Ethernet frame is sent to multiple MACs at the same time > you can daisy-chain switches to create larger networks

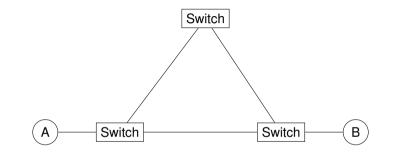
Connecting switches

 Switches can learn that multiple MAC addresses are reachable from a single port

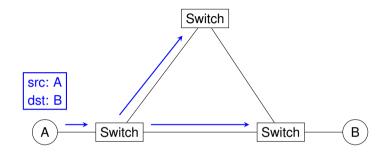
Table: Switch A

Port	MAC
1	А
2	В
3	С

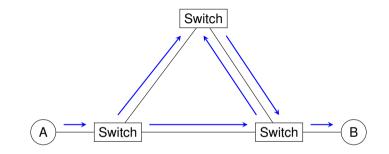
Table: Switch B


Port	MAC
1	С
2	A,B

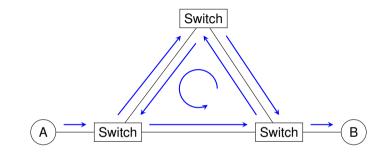
Uplinks



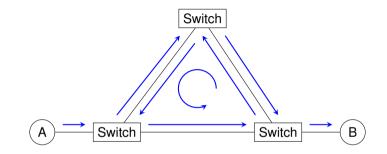
Uplinks



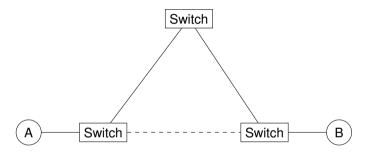
one might want to connect switches which causes loops



one might want to connect switches which causes loops


due to broadcasting, loops can cause frames to transmitted indefinitely

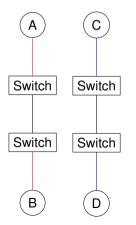
- one might want to connect switches which causes loops
- due to broadcasting, loops can cause frames to transmitted indefinitely



- one might want to connect switches which causes loops
- due to broadcasting, loops can cause frames to transmitted indefinitely

- one might want to connect switches which causes loops
- due to broadcasting, loops can cause frames to transmitted indefinitely
- this will lead to high processor load in the switches and eventually to dropped packets, since normal traffic can no longer flow

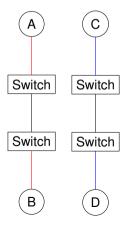
Spanning Tree Protocol (STP)


- as soon as switches are connected, they start talking with each other
- with STP they detect loops and disable links
- should a link fail, disabled links will be enabled

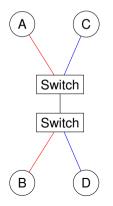
LAN vs VLAN

LAN vs VLAN

LAN


For each network you need a separate set of switches.

LAN vs VLAN


LAN

For each network you need a separate set of switches.

VLAN

You can set up multiple broadcast domains in a single set switches to create *virtual* networks.

VLAN

allows a single switch to act like multiple ones

VLAN

- allows a single switch to act like multiple ones
- can be used to isolate traffic between switchports

- allows a single switch to act like multiple ones
- can be used to isolate traffic between switchports
- each VLAN has a unique ID, between 1 and 4095

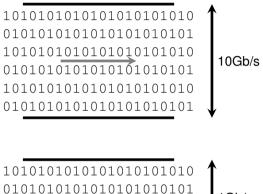
- allows a single switch to act like multiple ones
- can be used to isolate traffic between switchports
- each VLAN has a unique ID, between 1 and 4095
- ▶ each switch port can be associated to a VLAN ID ⇒ becomes an access port

- allows a single switch to act like multiple ones
- can be used to isolate traffic between switchports
- each VLAN has a unique ID, between 1 and 4095
- each switch port can be associated to a VLAN ID \Rightarrow becomes an **access port**
- frames coming into an access port are automatically tagged for a particular VLAN.

- allows a single switch to act like multiple ones
- can be used to isolate traffic between switchports
- each VLAN has a unique ID, between 1 and 4095
- each switch port can be associated to a VLAN ID \Rightarrow becomes an **access port**
- frames coming into an access port are automatically tagged for a particular VLAN.
- frames of one VLAN will only be forwarded to access ports of that VLAN.

- allows a single switch to act like multiple ones
- can be used to isolate traffic between switchports
- each VLAN has a unique ID, between 1 and 4095
- each switch port can be associated to a VLAN ID \Rightarrow becomes an **access port**
- frames coming into an access port are automatically tagged for a particular VLAN.
- frames of one VLAN will only be forwarded to access ports of that VLAN.
- ports connecting switches that serve the same VLANs must be configured to forward frames of any VLAN and must add the VLAN information to each frame. Such ports are called **trunk ports**

- allows a single switch to act like multiple ones
- can be used to isolate traffic between switchports
- each VLAN has a unique ID, between 1 and 4095
- each switch port can be associated to a VLAN ID \Rightarrow becomes an **access port**
- frames coming into an access port are automatically tagged for a particular VLAN.
- frames of one VLAN will only be forwarded to access ports of that VLAN.
- ports connecting switches that serve the same VLANs must be configured to forward frames of any VLAN and must add the VLAN information to each frame. Such ports are called **trunk ports**
- IEEE 802.1Q is the standard on how VLAN information is encoded in frames, which makes it work between different switch vendors.


Physical Layer

- 7 Application Layer
- 6 Presentation Layer
- 5 Session Layer
- 4 Transport Layer
- 3 Network Layer
- 2 Data Link Layer
- 1 Physical Layer

- Responsible for how bits are encoded and transmitted as electrical or optical signals or electromagnetic waves.
- Used technology limits both the **bandwidth** and the **latency** of a network

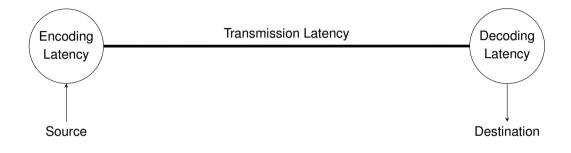
Network Bandwidth

- the maximum amount of data that can be transfered across a path per second
- determines the theoretical maximum transfer rate
- Unit: bits / second

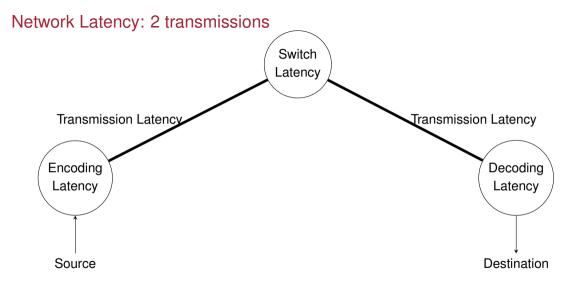
1Gb/s

Network Bandwidth: Examples

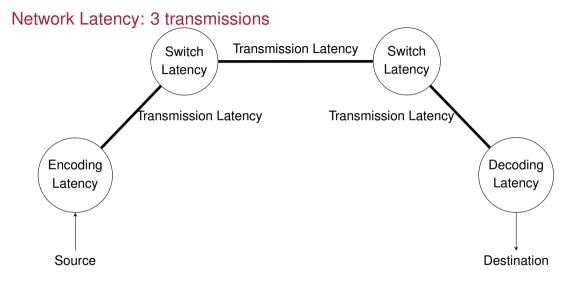
Technology	Bandwidth
Ethernet (copper) 1000BASE-T	1 Gbit/s
Ethernet (copper) 10GBASE-T	10 Gbit/s
Ethernet (fiber) 10GBASE-SR	10 Gbit/s
Ethernet (fiber) 10GBASE-SR4	40 Gbit/s
InfiniBand EDR	100 Gbit/s
WiFi 802.11g	56 Mbit/s
WiFi 802.11n	600 Mbit/s
WiFi 802.11ac	1.3 Gbit/s
4G LTE	300 Mbit/s
5G mmWave	1.8Gbit/s


Network Latency

$$\Delta t = 130 \mu s$$


how much time does it take for a transmission from start to finish

$$\Delta t = 1 \mu s$$


Network Latency: Point-to-Point

$$\mathsf{latency} = \Delta \mathit{t}_{\mathsf{encoding}} + \Delta \mathit{t}_{\mathsf{transmission}} + \Delta \mathit{t}_{\mathsf{decoding}}$$

$$\mathsf{Iatency} = \Delta t_{\mathsf{encoding}} + \sum \Delta t_{\mathsf{transmission}} + \Delta t_{\mathsf{switch}} + \Delta t_{\mathsf{decoding}}$$

$$\mathsf{Iatency} = \Delta \mathit{t}_{\mathsf{encoding}} + \sum \Delta \mathit{t}_{\mathsf{transmission}} + \sum \Delta \mathit{t}_{\mathsf{switch}} + \Delta \mathit{t}_{\mathsf{decoding}}$$

Network Layers: Summary

Basic Reference Model for Open Systems Interconnect (OSI model)

7 Application Laver Application protocol (HTTP, FTP, SMTP) Presentation Laver 6 compression, encryption, encoding Session Laver 5 authentication, permissions, session restoration Transport Laver end-to-end communication (TCP, UDP) 4 data exchange across network boundaries Network Laver 3 (packets) 2 Data Link Laver reliable data delivery in a LAN/WAN (frames) Physical Laver how are bits transmitted (symbols)